Ultra Compact EMC Filter

- Rated currents from 0.5 to 8.4 A
- Aluminium case
- Very compact PCB-mountable design
- Low profile
- Optional medical versions (B type)

Performance indicators

<table>
<thead>
<tr>
<th>Standard</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Technical specifications

- **Maximum continuous operating voltage**: 250 VAC, 50/60 Hz
- **Operating frequency**: DC to 400 Hz
- **Rated currents**: 0.5 to 8.4 A @ 40°C max.
- **High potential test voltage**
 - P → PE 2000 VAC for 2 sec (standard types)
 - P → N 760 VAC for 2 sec
 - P → PE 2500 VAC for 2 sec (B types)
- **Temperature range (operation and storage)**: -25°C to +100°C (25/100/21)
- **Design corresponding to**: UL 1283, CSA 22.2 No. 8 1986, IEC/EN 60939
- **Flammability corresponding to**: UL 94 V-0
- **MTBF @ 40°C/230 V (Mil-HB-217F)**: 1,900,000 hours

Approvals

- UL®
- CSA®
- I4
- RoHS

The FN 406 PCB filter is a single-phase filter designed for easy, fast and compact PCB-mounting. Choosing the FN 406 product line brings you the rapid availability of a standard filter associated with the necessary safety acceptance. Standard PCB single-phase filters are a practical solution helping you to pass EMI system approval in a short time. A selection on amperage ratings and medical types are designed to offer you the desired standard product.

Features and benefits

- Good conducted attenuation performance, based on chokes with high saturation resistance and excellent thermal behavior.
- PCB through hole mounting.
- Low profile.
- Custom specific versions on request.

Typical applications

- Electrical and electronic equipment
- Small to medium-sized machines and household equipment
- Single-phase power supplies, switch-mode power supplies
- Test and measurement equipment
- Medical equipment

Typical electrical schematic

```
  P  --  Cx  --  R  --  2xL  --  2xCy  --  P'
       |        |        |        |        |
       |        |        |        |        |
       |        |        |        |        |
  N  --  PE  --  N'  --  Load
```
Filter selection table

<table>
<thead>
<tr>
<th>Filter</th>
<th>Rated current @ 40 °C (25 °C)</th>
<th>Leakage current* @ 230 VAC/50 Hz</th>
<th>Inductance** L</th>
<th>Capacitance** Cx</th>
<th>Capacitance** Cy</th>
<th>Resistance** R</th>
<th>Input/Output connections</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN 406-0.5-02</td>
<td>0.5 (0.6)</td>
<td>373</td>
<td>24</td>
<td>100</td>
<td>2.2</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
</tr>
<tr>
<td>FN 406-1-02</td>
<td>1 (1.2)</td>
<td>373</td>
<td>12</td>
<td>100</td>
<td>2.2</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
</tr>
<tr>
<td>FN 406-3-02</td>
<td>3 (3.6)</td>
<td>373</td>
<td>2.5</td>
<td>100</td>
<td>2.2</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
</tr>
<tr>
<td>FN 406-6-02</td>
<td>6 (6.9)</td>
<td>373</td>
<td>0.78</td>
<td>100</td>
<td>2.2</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
</tr>
<tr>
<td>FN 406-8.4-02</td>
<td>8.4 (9.6)</td>
<td>373</td>
<td>0.3</td>
<td>100</td>
<td>2.2</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
</tr>
<tr>
<td>FN 406 B-0.5-02</td>
<td>0.5 (0.6)</td>
<td>2</td>
<td>24</td>
<td>100</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>FN 406 B-1-02</td>
<td>1 (1.2)</td>
<td>2</td>
<td>12</td>
<td>100</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>FN 406 B-3-02</td>
<td>3 (3.6)</td>
<td>2</td>
<td>2.5</td>
<td>100</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>FN 406 B-6-02</td>
<td>6 (6.9)</td>
<td>2</td>
<td>0.78</td>
<td>100</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>FN 406 B-8.4-02</td>
<td>8.4 (9.6)</td>
<td>2</td>
<td>0.3</td>
<td>100</td>
<td>1000</td>
<td>-02</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

* Maximum leakage under normal operating conditions. Note: if the neutral line is interrupted, worst case leakage could reach twice this level.

** Tolerances apply: Inductance: -30%/+50%, Capacitance: ±20%, Resistance: ±10%
Typical filter attenuation

Per CISPR 17; A=50 Ω/50 Ω sym; B=50 Ω/50 Ω asym; C=0.1 Ω/100 Ω sym; D=100 Ω/0.1 Ω sym

0.5 to 3 A types

6 A types

8.4 A types

Mechanical data

FN 406

All dimensions in mm; 1 inch = 25.4 mm
Tolerances according: ISO 2768-m/EN 22768-m

Please visit www.schaffner.com to find more details on filter connectors.
To find your local partner within Schaffner’s global network: www.schaffner.com

© 2018 Schaffner Group

The content of this document has been carefully checked and understood. However, neither Schaffner nor its subsidiaries assume any liability whatsoever for any errors or inaccuracies of this document and the consequences thereof. Published specifications are subject to change without notice. Product suitability for any area of application must ultimately be determined by the customer. In all cases, products must never be operated outside their published specifications. Schaffner does not guarantee the availability of all published products. This disclaimer shall be governed by substantive Swiss law and resulting disputes shall be settled by the courts at the place of business of Schaffner Holding AG. Latest publications and a complete disclaimer can be downloaded from the Schaffner website. All trademarks recognized.